Spectral theory for self-adjoint quadratic eigenvalue problems - a review

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-updating for self-adjoint quadratic eigenvalue problems

This paper concerns quadratic matrix functions of the form L(λ) = Mλ2 +Dλ+K where M,D,K are Hermitian n× n matrices with M > 0. It is shown how new systems of the same type can be generated with some eigenvalues and/or eigenvectors updated and this is accomplished without “spill-over” (i.e. other spectral data remain undisturbed). Furthermore, symmetry is preserved. The methods also apply for H...

متن کامل

Spectral Theory for Compact Self-Adjoint Operators

This agrees with the definition of the spectrum in the matrix case, where the resolvent set comprises all complex numbers that are not eigenvalues. In terms of its spectrum, we will see that a compact operator behaves like a matrix, in the sense that its spectrum is the union of all of its eigenvalues and 0. We begin with the eigenspaces of a compact operator. We start with two lemmas that we w...

متن کامل

Spectral Decomposition of Self-adjoint Quadratic Pencils and Its Applications

Spectral decomposition is of fundamental importance in many applications. Generally speaking, spectral decomposition provides a canonical representation of a linear operator over a vector space in terms of its eigenvalues and eigenfunctions. The canonical form often facilitates discussions which, otherwise, would be complicated and involved. This paper generalizes the classical results of eigen...

متن کامل

Diagonalizable Quadratic Eigenvalue Problems

A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...

متن کامل

Feynman’s Operational Calculi: Spectral Theory for Noncommuting Self-Adjoint Operators

The spectral theorem for commuting self-adjoint operators along with the associated functional (or operational) calculus is among the most useful and beautiful results of analysis. It is well known that forming a functional calculus for noncommuting self-adjoint operators is far more problematic. The central result of this paper establishes a rich functional calculus for any finite number of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2021

ISSN: 1081-3810

DOI: 10.13001/ela.2021.5361